The previous post detailed how to develop a map hack by taking advantage of existing functionality in the game. The technique relied on being able to toggle the map to a hidden/revealed state, and then using this functionality to methodically step through the assembly code. This eventually led to logic that was specific to hiding and revealing the map, where it was then possible to write a hack that invokes this functionality at will. The technique presented in this post is much easier than that, and is only made possible due to useful strings that were found in the binary.
The tool used in this post will be x64dbg, which is a really great debugger and disassembler, and what I consider to be the successor to the now-ancient OllyDbg. Unfortunately, it won’t really be used too much in this post since there won’t be much need of live analysis (this post is titled “the easy way” after all). Assembly snippets will be pasted from IDA Pro, since I find their copy+paste format to be the most readable.
Starting off by attaching to the process and doing a string dump (Right click -> Search for -> Current Module -> String references) for the main executable yielded 25817 strings for me — plenty to search through.
Filtering on the string “map” yields a much more manageable set. Looking through, there are a few strings that seem like they might lead somewhere interesting:
"trSetFogAndBlackmap(<true/false> <true/false>): turn fog and black map on/off."
"trRevealEntireMap -- shows whole map, similar to how revealed mode works"
"trPlayerResetBlackMap(: Resets the black map for a given HUMAN player."
"map visibility"
"blackmap([integerState]) : toggles or sets unexplored black map rendering."
The two most promising places seem to be the ones highlighted in orange. The strings give a clear description of what the function does and even provides parameter arguments. The “trX” functions appear to be related to the triggers system that is available in the game and allows map makers to add effects and conditions to their custom maps. Looking at references to the first string goes to the following:
...
.text:008B2B76 loc_8B2B76: ; CODE XREF: sub_8AE4A0+46CDj
.text:008B2B76 mov ecx, esi
.text:008B2B78 call sub_59C270
.text:008B2B7D push 1
.text:008B2B7F push offset loc_8AAEE0
.text:008B2B84 push offset aTrsetfogandbla ; "trSetFogAndBlackmap"
.text:008B2B89 mov ecx, esi
.text:008B2B8B call sub_59BE80
.text:008B2B90 test al, al
.text:008B2B92 jnz short loc_8B2BAE
.text:008B2B94 push offset aTrsetfogandbla ; "trSetFogAndBlackmap"
.text:008B2B99 push offset aSyscallConfigE ; "Syscall config error - Unable to add th"...
.text:008B2B9E push esi ; int
.text:008B2B9F call sub_59DBC0
...
The code here begins by passing in the string, a pointer to a function, and a constant (1) as arguments to another function (teal). The return value of this call is checked for 0, which is an error condition (blue). From looking at the what is happening in a disassembler, this pattern is found throughout everywhere. This code, and all of the surrounding code, is attempting to register triggers and is providing the trigger name, a callback to where the trigger code lives, and a yet unknown constant of 1. Given that, the real place to look would be in the callback.
Following through to the callback leads to the following section of code:
.text:008AAEE0 loc_8AAEE0: ; DATA XREF: sub_8AE4A0+46DFo
.text:008AAEE0 mov eax, dword_A9D244
.text:008AAEE5 mov ecx, [eax+140h]
.text:008AAEEB test ecx, ecx
.text:008AAEED jz short locret_8AAF13
.text:008AAEEF mov edx, [esp+4]
.text:008AAEF3 push 0
.text:008AAEF5 push edx
.text:008AAEF6 call sub_5316B0
.text:008AAEFB mov eax, [esp+8]
.text:008AAEFF mov ecx, dword_A9D244
.text:008AAF05 mov ecx, [ecx+140h]
.text:008AAF0B push 0
.text:008AAF0D push eax
.text:008AAF0E call sub_5316D0
.text:008AAF13
.text:008AAF13 locret_8AAF13: ; CODE XREF: .text:008AAEEDj
.text:008AAF13 retn
The two calls here (green) should be familiar if you have read the first part of this series recently. These are the two functions that were eventually found to control revealing and hiding the map to the player. Each function takes in a “this” pointer, which we can see here is loaded from a constant address and is likely the class for the main player, along with a true/false value which describes what should happen to the map. There’s also a third constant parameter of 0 here, which is different from the constant parameter of 1 at the other call site from the previous post, possibly indicating whether the map state is being changed via player interaction or a trigger.
Knowing this, the hack from the previous post can be made a bit better. With the old hack, there was an issue of having to provide a fake “this” pointer which needed to have a field written into, and there was only a true/false toggle option. Going from the documentation provided by the string dump, this function takes in two booleans — presumably to control the black overlap and the fog of war which obscures areas that the player has already explored but does not have vision of anymore.
The new (and still hacky) code is below:
#include <Windows.h>
using pToggleMapFnc = void (__cdecl *)(bool bEnableBlackOverlay, bool bEnableFogOfWar);
int APIENTRY DllMain(HMODULE hModule, DWORD dwReason, LPVOID lpReserved)
{
switch (dwReason)
{
case DLL_PROCESS_ATTACH:
{
(void)DisableThreadLibraryCalls(hModule);
pToggleMapFnc ToggleMap = (pToggleMapFnc)0x008AAEE0;
while (!GetAsyncKeyState('0'))
{
if (GetAsyncKeyState('6'))
{
ToggleMap(true, true);
}
else if (GetAsyncKeyState('7'))
{
ToggleMap(true, false);
}
else if (GetAsyncKeyState('8'))
{
ToggleMap(false, true);
}
else if (GetAsyncKeyState('9'))
{
ToggleMap(false, false);
}
Sleep(10);
}
break;
}
case DLL_PROCESS_DETACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
break;
}
return TRUE;
} |
#include <Windows.h>
using pToggleMapFnc = void (__cdecl *)(bool bEnableBlackOverlay, bool bEnableFogOfWar);
int APIENTRY DllMain(HMODULE hModule, DWORD dwReason, LPVOID lpReserved)
{
switch (dwReason)
{
case DLL_PROCESS_ATTACH:
{
(void)DisableThreadLibraryCalls(hModule);
pToggleMapFnc ToggleMap = (pToggleMapFnc)0x008AAEE0;
while (!GetAsyncKeyState('0'))
{
if (GetAsyncKeyState('6'))
{
ToggleMap(true, true);
}
else if (GetAsyncKeyState('7'))
{
ToggleMap(true, false);
}
else if (GetAsyncKeyState('8'))
{
ToggleMap(false, true);
}
else if (GetAsyncKeyState('9'))
{
ToggleMap(false, false);
}
Sleep(10);
}
break;
}
case DLL_PROCESS_DETACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
break;
}
return TRUE;
}
Calling the function with the various parameter combinations reveals the following behavior:
True/True – Black map overlay with fog of war
True/False – No black map overlay, fog of war is still present. Features are missing from the map.
False/True – Black map overlay without fog of war. Areas that were explored will always have line of sight
False/False – No black map overlay, no fog of war. Everything is visible.
Screenshots of the mini-map is shown for these four states below:




The hack becomes a bit cleaner since now it is just making a direct call to a function and doesn’t require passing anything unknown. Hopefully it is obvious why this is considered the “easy way” versus the previous post, which required a large amount of debugging and tracing.
The next, and last, part of this series will cover how to clean this hack up a bit more and make it more professional. Additionally, it will cover what is involved in porting this hack to the newer Extended Edition version of the game.
Thanks for reading and follow on Twitter for more updates.